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Recently, researchers in several areas of ecology and

evolution have begun to change the way in which they

analyze data and make biological inferences. Rather

than the traditional null hypothesis testing approach,

they have adopted an approach called model selection,

in which several competing hypotheses are simul-

taneously confronted with data. Model selection can be

used to identify a single best model, thus lending sup-

port to one particular hypothesis, or it can be used to

make inferences based on weighted support from a

complete set of competing models. Model selection is

widely accepted and well developed in certain fields,

most notably in molecular systematics and mark–

recapture analysis. However, it is now gaining support

in several other areas, from molecular evolution to land-

scape ecology. Here, we outline the steps of model

selection and highlight several ways that it is now being

implemented. By adopting this approach, researchers in

ecology and evolution will find a valuable alternative

to traditional null hypothesis testing, especially when

more than one hypothesis is plausible.

Science is a process for learning about nature in which
competing ideas about how the world works are evaluated
against observations [1]. These ideas are usually expressed
first as verbal hypotheses, and then as mathematical
equations, or models. Models depict biological processes
in simplified and general ways that provide insight into
factors that are responsible for observed patterns. Hence,
the degree to which observed data support a model also
reflects the relative support for the associated hypothesis.

Two basic approaches have been used to draw biological
inferences. The dominant paradigm is to generate a null
hypothesis (typically one with little biological meaning [2])
and ask whether the hypothesis can be rejected in light
of observed data. Rejection occurs when a test statistic
generated from observed data falls beyond an arbitrary
probability threshold (usually P ,0.05), which is inter-
preted as tacit support for a biologically more meaningful
alternative hypothesis. Hence, the actual hypothesis of
interest (the alternative hypothesis) is accepted only in the
sense that the null hypothesis is rejected.

By contrast, model selection offers a way to draw
inferences from a set of multiple competing hypotheses.
Model selection is grounded in likelihood theory, a robust

framework that supports most modern statistical
approaches. Moreover, this approach is rapidly gaining
support across several fields in ecology and evolution as a
preferred alternative to null hypothesis testing [1,3,4].
Advocates of model selection argue that it has three
primary advantages. First, practitioners are not restricted
to evaluating a single model where significance is measured
against some arbitrary probability threshold. Instead,
competing models are compared to one another by evalu-
ating the relative support in the observed data for each
model. Second, models can be ranked and weighted, thereby
providing a quantitative measure of relative support for
each competing hypothesis. Third, in cases where models
have similar levels of support from the data, model averag-
ing can be used to make robust parameter estimates and
predictions. Here, we review the steps of model selection,
overview several fields where model selection is commonly
used, indicate how model selection could be more broadly
implemented and, finally, discuss caveats and areas of
future development in model selection (Box 1).

How model selection works

Generating biological hypotheses as candidate models

Model selection is underpinned by a philosophical view
that understanding can best be approached by simul-
taneously weighing evidence for multiple working hypo-
theses [1,3,5]. Consequently, the first step in model
selection lies in articulating a reasonable set of competing
hypotheses. Ideally, this set is chosen before data collection
and represents the best understanding of factors thought
to be involved in the process of interest. Hypotheses that
originate in verbal or graphical form must be translated
to mathematical equations (i.e. models) before being fit to

Box 1. The big picture

† Biologists rely on statistical approaches to draw inferences about

biological processes.

† In many fields, the approach of null hypothesis testing is being

replaced by model selection as a means of making inferences.

† Under the model selection approach, several models, each repre-

senting one hypothesis, are simultaneously evaluated in terms of

support from observed data.

† Models can be ranked and assigned weights, providing a quanti-

tative measure of relative support for each hypothesis.

† Where models have similar levels of support, model averaging

can be used to make robust parameter estimates and predictions.
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data [1,6]. Translating hypotheses to models requires
identifying variables and selecting mathematical func-
tions that depict the biological processes through which
those variables are related (Box 2).

Fitting models to data

Once a set of candidate models is specified, each model
must be fit to the observed data. At an early stage of the
analysis, one can examine the goodness-of-fit of the most
heavily parameterized (i.e. global) model in the candidate
set [3]. Such goodness-of-fit can be assessed using con-
ventional statistical tests (e.g. x 2 tests or G-tests) [7] or a
PARAMETRIC BOOTSTRAP procedure (see Glossary). If the
global model provides a reasonable fit to the data, then
the analysis proceeds by fitting each of the models in the
candidate set to the observed data using the method of
MAXIMUM LIKELIHOOD or the method of LEAST SQUARES.

Selecting a best model or best set of models

Model selection is frequently employed as a way to identify
the model that is best supported by the data (referred to as
the ‘best model’) from among the candidate set. In other
words, it can be used to identify the hypothesis that is best
supported by observations. Two fundamentally different
approaches are frequently used to address this in ecology
and evolution (Box 3). One is to use a series of null

hypothesis tests, such as LIKELIHOOD RATIO TESTS in
phylogenetic analysis or F–tests in multiple regression
analysis, to compare pairs of models from among the
candidate set. However, this approach is typically
restricted to nested models (i.e. the simpler model is a
special case of the more complex model) and, in some cases,
leads to suboptimal models that are dependent upon the
hierarchical order in which models are compared [8].
Moreover, such tests cannot be used to quantify the
relative support for the various models.

By contrast, model selection criteria can be used to rank
competing models and to weigh the relative support for
each one. These techniques utilize maximum likelihood
scores as a measure of fit (more precisely, negative

Glossary

Akaike information criterion (AIC): an estimate of the expected Kullback–

Leibler information [3] lost by using a model to approximate the process that

generated observed data (full reality). AIC has two components: negative log-

likelihood, which measures lack of model fit to the observed data, and a bias

correction factor, which increases as a function of the number of model

parameters.

Akaike weight: the relative likelihood of the model given the data. Akaike

weights are normalized across the set of candidate models to sum to one, and

are interpreted as probabilities. A model whose Akaike weight approaches 1 is

unambiguously supported by the data, whereas models with approximately

equal weights have a similar level of support in the data. Akaike weights

provide a basis for model averaging (Box 4).

Least squares: a method of fitting a model to data by minimizing the squared

differences between observed and predicted values.

Likelihood ratio test: a test frequently used to determine whether data support

a fuller model over a reduced model (Box 3). The fuller model is accepted as

best when the likelihood ratio (reduced model negative log-likelihood: full

model negative log-likelihood) is sufficiently large that the difference is

unlikely to have occurred by chance (i.e. P , 0.05).

Maximum likelihood: a method of fitting a model to data by maximizing an

explicit likelihood function, which specifies the likelihood of the unknown

parameters of the model given the model form and the data. Parameter values

associated with the maximum of the likelihood function are termed the

maximum likelihood estimates of that model.

Model averaging: a procedure that accounts for model selection uncertainty

(defined below) in order to obtain robust estimates of model parameters ðûÞ or

model predictions ðŷÞ (Box 4). A weighted average of the model-specific

estimates of û or ŷ is calculated based on the Akaike weight [3] (or posterior

probabilities if estimated using a Bayesian approach [48]) of each model.

Where û does not appear in a model, the value of zero is entered.

Model selection bias: bias favoring models with parameters that are over-

estimated; such bias can be overcome during model averaging by entering the

value 0 for parameters when they are not already included in the particular

models to be averaged.

Model selection uncertainty: uncertainty about parameter estimates or model

predictions that arises from having selected the model based on observations

rather than actually knowing the best approximating model. Model selection

uncertainty can be accounted for using model averaging.

Parametric bootstrap: a statistical technique in which new data are generated

from Monte Carlo simulations of the fitted model. A measure offit (typically the

deviance) is then computed, both for the model fit to the observed data, and for

the model fit to the simulated data. If the deviance of the model fit to the

observed data falls within the core of the distribution of the deviance of model

fit to the simulated data, then the model is said to fit the data adequately.

Parsimony: in statistics, a tradeoff between bias and variance. Too few

parameters results in high bias in parameter estimators and an underfit model

(relative to the best model) that fails to identify all factors of importance. Too

many parameters results in high variance in parameter estimators and an

overfit model that risks identifying spurious factors as important, and that

cannot be generalized beyond the observed sample data.

Schwarz criterion (SC) (also known as the Bayesian information criterion) [10]:

a model selection criterion designed to find the most probable model (from a

Bayesian perspective) given the data (Box 3). Superficially similar to AICc , SC

has two components: negative log-likelihood, which measures lack of fit, and

a penalty term that varies as a function of sample size and the number of

model parameters. SC is equivalent (under certain conditions) to the natural

logarithm of the Bayes factor [48].

Box 2. From multiple working hypotheses to a set of

candidate models

To use model selection, verbal hypotheses must be translated to

mathematical models. Ideally, the parameters of such models

have direct biological interpretation, but translating hypotheses to

meaningful models (as opposed to statistically arbitrary models,

e.g. ANOVA or linear regression) is not always intuitive. Hence,

we offer some guidance about how to get from multiple working

hypotheses to a set of candidate models [2,6].

The first step is to specify variables in the model. Variables should

correspond directly to causal factors outlined in the verbal hypo-

theses. The second step is to decide on the functions that define the

relationship between independent variables and the response vari-

able in terms of mathematical operators and parameters. In fields

where model selection is commonly used (Box 5), appropriate

functions can be found in published literature or tailored software

[45,46]. In other fields, suitable models can be found in theoretical

literature or borrowed from other disciplines. The third step is to

define the error structure of the model.

Generating hypotheses and translating them to models is an

iterative process. For example, one hypothesis might seem to be

equally well depicted by two or more models, including different

error structures. In such cases, the verbal rendition of the hypothesis

must be refined so that there is a one-to-one mapping from hypo-

thesis to model. This can lead to an increase in the number of working

hypotheses; however, care should be taken not to include models

with functional relationships among variables that are not interpret-

able. In this regard, model selection differs from data dredging,

where the analyst explores all possible models regardless of the

interpretability of their functions, or continues to develop models to

be tested after analysis is underway [3].

Ultimately, the number of candidate models should be small

(some argue, on philosophical grounds, that this should be fewer

than 20 [3]). The guiding principle at this step is to avoid generating

so many models that spurious findings become likely. Moreover, one

should avoid relying on computing power to fit all available models

in lieu of identifying a bona fide candidate set.
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log-likelihood scores as a measure of lack of fit) and
a term that, in effect, penalizes models for greater
complexity. Two criteria commonly used in ecology and
evolution are the AKAIKE INFORMATION CRITERION (AIC)
[9] and the SCHWARZ CRITERION (SC; known also as
the Bayesian information criterion, or BIC) [10]. The
use of model selection criteria enable inference to be
drawn from several models simultaneously, so that
researchers can consider a ‘best set’ of similarly sup-
ported models.

Parameter estimation and model averaging

Often, the underlying motive for model selection is to
estimate model parameters that are of particular bio-
logical interest (e.g. survival rate in mark–recapture
studies, or transition:transversion ratios for phylogenetic
studies), or to identify a model that can be used for
prediction. When there is clear support for one model,
maximum likelihood parameter estimates or predictions
from that model can be used. However, there is sometimes
nearly equivalent support in the observed data for multiple

Box 3. Approaches to model selection

Once a set of candidate models is defined, they can be fit to observed

data and compared to one another. Practitioners typically use one of

three kinds of statistical approach to compare models: (i) maximizing fit;

(ii) null hypothesis tests; and (iii) model selection criteria. Here, we

highlight five frequently used techniques (Table I). Our list is not

exhaustive (for additional examples, see [47–50]). Rather, we describe

approaches most commonly used in ecology and evolutionary biology.

Maximizing fit

A naı̈ve approach to model selection is to calculate a measure offit, such

as adjusted R 2, and select the model that maximizes that quantity.

Maximizing fit, with no consideration of model complexity, always

favors fuller (i.e. more parameter rich) models. However, it neglects the

principle of PARSIMONY and, consequently, can result in imprecise

parameter estimates and predictions, making it a poor technique for

model selection. By contrast, tests or criteria that account for both fit and

complexity are better suited for selecting a model.

Null hypothesis tests
The likelihood ratio test (LRT) is the most commonly used null

hypothesis approach. LRT compare pairs of nested models. When the

likelihood of the more complex model is significantly greater than that

of the simpler model (as judged by a x 2 statistic), the complex model is

chosen, and vice versa. Selection of the more complex model indicates

that the benefit of improved model fit outweighs the cost of added

model complexity. LRT are often used hierarchically in a procedure

analogous to forward selection in multiple regression, where the ana-

lyst starts with the simplest model and adds terms as LRTs indicate a

significant improvement in fit. A drawback is that it requires several non-

independent tests, thus inflating type I error. In addition, hierarchical

LRTs sometimes select suboptimal models that are dependent upon the

order in which models are compared, in which case dynamical LRTs can

be employed [8]. However, no form of LRT can be used to quantify

relative support among competing models.

Model selection criteria

Model selection criteria consider both fit and complexity, and

enable multiple models to be compared simultaneously. The Akaike

information criterion (AIC) estimates the Kullback–Leibler information

lost by approximating full reality with the fitted model. Computation

entails terms representing lack of fit and a bias correction factor related

to model complexity. AIC has a second order derivative, AICc , which

contains a bias correction term for small sample size, and should be

used when the number of free parameters, p, exceeds ,n /40 (where n

is sample size). Schwarz criterion (SC; also referred to as a Bayesian

information criterion, or BIC) [9] is structurally similar to AIC (Table I),

but includes a penalty term dependent on sample size. Consequently,

SC tends to favor simpler models, particularly as sample size increases

[47]. Under certain conditions, model selection using SC and Bayes

factor are equivalent, such that choosing the model with the smallest

SC is equivalent to choosing the model with the greatest posterior

probability [48]. Derivation of SC rests on several stringent assumptions

that are seldom satisfied with empirical data, including that one true

model exists, that this model is among the candidate set, and that the

true model has an equal prior probability to each of the other models in

the candidate set. Although SC superficially resembles AICc , it is not

based in Kullback–Leibler information theory.

Which approach to use?
Which model selection approach is most appropriate? Techniques

that maximize fit alone have clear limitations with regard to

parsimony. Among approaches that consider fit and model

complexity, many practitioners are moving from LRTs toward

model selection criteria. For example, molecular systematists

have traditionally used hierarchical LRTs to choose among

competing models. However, this pattern could shift as researchers

recognize the limitations of LRTs relative to the model selection

criteria [4] (Box 5). Among model selection criteria, AIC is generally

favored because it has its foundation in Kullback–Leibler infor-

mation theory [3]. Yet, some prefer SC over AIC because the

former selects simpler models [6]. An important advantage of using

model selection criteria (e.g. AIC and SC) is that they can be used

to make inferences from more than one model, something that

cannot be done using the fit maximization or null hypothesis

approaches.

Table I. Commonly used model selection methods

Model selection method Calculationa Elements Refs

Adjusted R 2 R2
adj ¼ 1 2

RSS=n 2 p 2 1P
ðyi 2 �yÞ2=n 2 1

Fit [7]

Likelihood ratio test LRT ¼ 22{ln½Lðûp ly�2 ln½Lðûpþq lyÞ�} , x2
q Fit and complexity [7]

Akaike information criterion (AIC) AIC ¼ 22ln½Lðûp ly
�
þ 2p Fit and complexity [3]

Small sample unbiased AIC (AICc) AICc ¼ 22ln½Lðûp ly� þ 2p

 
n

n 2 p 2 1

!
Fit and complexity (with bias correction term for

small sample size)

[3]

Schwarz criterion SC ¼ 22lnbLðûp ly cþ p·lnðnÞ Fit, complexity, and sample size [10]

aRSS, residual sum of squares for a linear model; n, sample size; p, count offree parameters (s 2 must be included if it is estimated from the data); q, additional parameters of

a fuller model; y : data; Lðû lyÞ : likelihood of the model parameters (more precisely, their maximum likelihood estimates, ûp ) given the data, y ; for a model fitted by least

squares with the usual assumptions, In½Lðûp lyÞ� ¼ 2n=2InðRSS=nÞ; enabling computation of LRTs, AIC, AICc , and SC from standard regression output.
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models [i.e. Akaike information criterion (AIC) values are
nearly equal], making it problematic to choose one model
over another. MODEL AVERAGING provides a way to address
this problem (Box 4). Parameter estimates or predictions
obtained by model averaging are robust in the sense that
they reduce MODEL SELECTION BIAS and account for MODEL

SELECTION UNCERTAINTY.

Inference from model selection

Ultimately, model selection is a tool for making inference
about unobserved processes based on observed patterns.
Data that clearly support one model over several others
lend strong support to the corresponding hypothesis
(among those considered); that is, we can infer the process
that is most likely to have operated in generating the
observed data. However, some inferences, such as deter-
mining the relative importance of predictor variables, can
be made only by examining the entire set of candidate
models (Box 4).

Where model selection is being used

Model selection is well established as a basic tool in select
biological disciplines. In particular, it is a prerequisite for
most mark–recapture studies and for most phylogenetic
studies (Box 5). Model selection is now beginning to be
implemented more broadly to address a variety of addi-
tional questions in ecology and evolution (Table 1). Here,
we highlight some areas where such an approach has
proved useful.

Ecology

Mark–recapture analyses are used widely to estimate
population abundance and survival probabilities [11,12].
A fundamental challenge is to separate the probability
that a marked individual has died from the probability
that it was not recaptured in spite of having survived.
Wildlife biologists address this problem by generating a set
of competing models that depict different ways in which
survival and encounter probabilities could vary as a func-
tion of time, the environment, or individual traits (e.g. sex
or size) (Box 5). The favored model (or set of models) is then
used to estimate parameters of interest, or to infer the
biological processes governing survival or abundance.
This approach has been used to estimate vital rates for
management and conservation [13,14], and to infer how
factors, such as individual physiological status, or environ-
mental conditions, affect vital rates [15,16]. Community
ecologists [17] and paleontologists [18] have even adopted
this mark–recapture model selection framework to esti-
mate species richness and species turnover rates.

There is also a rich tradition of using models to explore
population dynamics [6]. Ecologists have proposed many
competing hypotheses to explain patterns of population
fluctuation over time. An increasing number of studies
have fit models depicting competing hypotheses to
observed time series data; applications include detecting
chaotic dynamics in natural populations [19], inferring
the mechanism underlying population cycles [20,21],
and separating the influence of density-dependent and

Box 4. Multi-model inference

The model selection paradigm is moving beyond simply choosing a

single, best model. Multi-model inference refers to a set of analysis

techniques employed to enable formal inference from more than one

model [3]. These techniques can be divided into two areas.

Generating a confidence set of models
How do we know which models are well supported by the data? A set of

calculations based on Akaike information criterion (AIC) provides one

way for making this determination. Once each model has been fit to the

data and an AIC score has been computed, differences in these scores

between each model and the best model are calculated (the ’best’ model

in the set has the minimum AIC score) (Eqn I)

Di ¼ AICi 2 AICmin ½Eqn I�

The likelihood of a model, gi, given the data, y, is then calculated as

Eqn II,

Lðgi lyÞ ¼ expð21=2Di Þ ½Eqn II�

In some cases, it is informative to contrast the likelihood of pairs of

models, particularly that of the best model with each other model, using

the evidence ratio (Eqn III),

ER ¼
Lðgbest lyÞ

Lðgi lyÞ
: ½Eqn III�

Model likelihood values can also be normalized across all R models so

that they sum to 1 (Eqn IV),

Wi ¼
expð21=2Di ÞXR

j¼i

expð21=2Dj Þ

½Eqn IV�

This value, referred to as the Akaike weight, provides a relative weight

of evidence for each model. Akaike weights can be interpreted as the

probability that model i is the best model for the observed data, given

the candidate set of models. They are additive and can be summed to

provide a confidence set of models, with a particular probability that the

best approximating model is contained within the confidence set. They

also provide a way to estimate the relative importance of a predictor

variable (or a functional form that represents some biological process).

This measure of relative importance can be calculated as the sum of

the Akaike weights over all of the models in which the parameter

(or functional form) of interest appears [3].

Model averaging

When the underlying goal of model selection is parameter estimation or

prediction, and no single model is overwhelmingly supported by the

data (i.e. wbest ,0.9), then model averaging can be used. This entails

calculating a weighted average of parameter estimates, û (Eqn V),

�̂u ¼
XR
i¼1

wi ûi ½Eqn V�

(where ûi is the estimate of û from the i th model) across all R models in

the candidate set. The variance of these estimates can also be calculated

(Eqn VI),

vârð �̂uÞ ¼
XR
i¼1

wi ½vârðûlgi Þ þ ðûi 2 �̂uÞ2� ½Eqn VI�

(where vârðû lgi Þ is the estimate of the variance of u from the i th model).

This variance estimator can be used to assess the precision of the

estimate over the set of models considered, thereby providing a way to

generate a confidence interval on the parameter estimate that accounts

for model selection uncertainty. Predicted values of the response

variable can be averaged over the models in the candidate set in an

analogous way [3].
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environmental factors [22]. However, in spite of a heavy
reliance on AIC for model selection in statistical time
series analysis, only recently have population ecologists
applied model selection to quantify support for competing
explanations [23], an approach that appears to be pro-
mising as a way to infer mechanisms that control natural
fluctuations in population size.

Evolution

Model selection now underpins most phylogenetic recon-
struction. All methods of phylogenetic inference are based

on hypotheses about how biological characters change
through time [24]. When phylogenies are reconstructed
from DNA data, these hypotheses can be expressed as
competing models of nucleotide substitution [25] (Box 5).
In molecular phylogenetics, it is now common to consider
multiple models of molecular evolution before selecting a
single best model to be used in maximum likelihood or
Bayesian phylogenetic reconstruction [8,26,27]. Recent
advances in model-based morphological phylogenetics
[28,29] suggest that model selection can also be used
to address a variety of new questions relating to the

Box 5. Parallel development of model selection in wildlife biology and molecular systematics

Although the initial statistical machinery and philosophical under-

pinnings of model selection have been available for 30 years [9],

ecologists and evolutionary biologists have only recently expanded and

incorporated this tool. Wildlife biologists and molecular systematists

have been at the forefront of bringing model selection to ecology and

evolution, yet the approach has been applied almost independently in

these two fields. Still, there are striking similarities and interesting

differences in how model selection is currently used (Table I).

Wildlife biology

Fifteen years ago, a group of wildlife biologists grappling with the

problem of how to compare non-nested models began using the Akaike

information criterion (AIC) as a basis for model selection [11]. Conse-

quently, AICc (or its variant QAICc used for overdispersed count data) is

now standard in mark–recapture analysis [45]. Goodness-of-fit testing

and model averaging also are commonly used in mark–recapture

studies. Most recently, the trend is toward using multiple models to

estimate parameters of interest and to infer biological processes. Hence,

hierarchical likelihood ratio tests (LRT) are seldom employed.

Molecular systematics
Molecular systematists found a need for model selection because

different models of DNA sequence evolution sometimes result in the

construction of different trees [51]. Hence, over the past ten years, a view

has evolved among many systematists that it is necessary to identify

one best-fitting model from a nested set of candidate models, and then

use this chosen model to generate the phylogeny [46]. Goodness-of-fit

testing is rare in systematics, and hierarchical LRTs remain common.

However, interest in AIC, and its broader utility in molecular systema-

tics, appears to be increasing [4].

Integrating across fields

Recent interactions between wildlife biology and molecular systematics

in the use of model selection are leading to exciting new developments.

For example, a primary focus of mark–recapture studies is to estimate

survival rates, where model averaging is used to yield more robust

estimates of model parameters. Molecular systematists frequently use

estimates of model parameters in phylogeny reconstruction, but have

traditionally relied on maximum likelihood estimates from a single best

model. However, using model averaging to obtain more robust para-

meter estimates provides a new option in phylogeny reconstruction [4].

Similarly, Akaike weights could be used to determine the relative sup-

port for conflicting topologies generated under different models of

molecular evolution, and might provide a basis for combining dis-

cordant trees [4]. Hence, the integration of model selection techniques

across disciplines, particularly multi-model inference (Box 4), promises

to bring together several previously distinct fields.

Table I. Comparison of model selection implementation in mark-recapture research and molecular systematicsa

Mark–recapture studies Molecular systematics

Objective To estimate parameters (survival rates, recapture

rates, and transition rates) based on recovery of

marked individuals

To identify a model of molecular evolution and model

parameter estimates that can be used in phylogenetic

reconstruction

Model types Multinomial probability models Multinomial probability models

Set of candidate models Parameter families [10]: Parameter families [46]:

S, survival probability t, phylogenetic tree, including branch lengths

p, detection probability p, nucleotide base frequencies

c, transition probability (multi-strata models) I, proportion of invariable nucleotide sites in a set of aligned

DNA sequences

Model variations:

Parameter constant, u†
Parameter varying freely over time, ut

Parameter differing among groups, ug

Parameter differing by patch, ur

Linear trend in parameter value, u ¼ f(t)

Parameter a function of a covariate, u ¼ f(x)

G, substitution rate heterogeneity among nucleotide sites

(gamma distribution with four discrete categories)

f, substitution rate variation among nucleotides (6 classes of

transitions and transversions)

Goodness of fit test Commonly used; applied to the most complex

model before the model selection step

Very rare; when used, applied to the best model after the

model selection step [52]

Model fitting algorithm Maximum likelihood Maximum likelihood

Model selection criterion Predominantly AICc or QAICc; LRT seldom used Predominantly hierarchical LRT; AIC seldom used

Use of model averaging Uncommon, but available and sometimes used [3] Recently introduced, but still rarely used [4]

Software commonly used MARK [45] MODELTEST [46]

aAbbreviations: AIC, Akaike information criterion; LRT, likelihood ratio test; QAIC, variant of AIC for overdispersed count data.
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rate and patterns of morphological character evolution
over time.

A more recent application of model selection in evolu-
tionary biology is to identify selective pressures that shape
adaptations in the wild. Given the complexity of natural
systems, there are often several ecological factors and a
variety of mechanisms that could explain evolutionary
change. Fitting competing models to observed data can
represent these alternative explanations. For example,
model selection has been used recently to explore probable
causes of life-history diversification in natural systems,
including body size at emergence and timing of emergence
in desert stream caddisflies [30] and size at maturity,
number and size of offspring, and reproductive investment
in tropical live-bearing fish [31].

When should model selection be used?

Model selection is well suited for making inferences from
observational data, especially when data are collected from
complex systems or when inferring historical scenarios
where several different competing hypotheses can be put
forward. Not surprisingly, such conditions are typical of
many research problems in ecology and evolution, par-
ticularly when experimental manipulation is not possible.
Unfortunately, null hypothesis testing remains the domi-
nant mode of inference in ecology and evolution [2], even
for studies that are best suited to the model selection
approach. We illustrate this with two examples.

Statistical phylogeography

A goal of phylogeography is to uncover the geographical
and demographic histories of populations [32,33]. Given
that it is impossible to test population histories experi-
mentally, inferences must be made using contemporary
genetic data: typically observations of the spatial distri-
bution of genetic variation among extant populations,
combined with gene trees. Recent work has highlighted
the advantages of statistically testing multiple historical
scenarios [34–36]. Yet, the statistical framework has been

limited to null hypothesis tests. Such approaches yield a
single population history, but fail to provide insights into
estimate error and do not consider the relative support for
alternative scenarios. Some statistical phylogeographers,
aware of this shortcoming, have recently called for an
approach that promotes the generation of explicit models
of population histories, whilst providing the tools to
evaluate the fit of these models to observed data [36].
Model selection could provide a statistical framework to
help fill this void.

Ecosystem science

A focal problem in ecosystem science is unraveling com-
plex trophic relationships among taxa. This issue has been
addressed at both the theoretical [37] and empirical [38]
level using models of food chains and food webs. The cur-
rent state-of-the-art in ecosystem modeling is to advance a
simple hypothesis, to acquire a few observational data
sufficient to test the simple hypothesis, and to use these
results to show where the assumptions of the simple model
failed, thus leading to a refined hypothesis and further
testing [39]. Model selection offers a framework through
which empirical support for a set of food-web models can be
weighed simultaneously. The utility of this approach was
demonstrated in a study of subterranean interactions
among plants, root-feeding caterpillars, and nematode
parasitoids of the caterpillars. Model selection revealed
that nematodes provided the shrubs an appreciable degree
of protection from caterpillars, a result whose ecological
interpretability would not have been attained using the
conventional logistic regression approach [40]. Hence,
adopting model selection appears to hold great promise for
increasing our understanding of trophic interactions, and
should have similar utility in other systems that are too
complex for experimental manipulation.

Caveats and future direction

As the use of model selection becomes more widespread,
it is important to be aware of potential pitfalls and

Table 1. Increasing use of model selection in ecology and evolution

Discipline Problem Refs

Ecology

Natural history Identifying foraging strategies of species (generalist versus specialist) [53]

Population ecology and management Isolating endogenous and exogenous mechanisms of regulation [23,54]

Detecting spatial heterogeneity in population regulation [55]

Relating survival rates to physiological and environmental factors (mark–recapture data) [13–16]

Correlating vital rates with covariates (monitoring data) [56]

Modeling herbivore functional response [57]

Behavioral ecology Discerning how animals allocate risk in response to predation [58]

Modeling dispersal [59]

Community ecology Modeling effects of fire on community organization [60]

Landscape ecology Predicting how vertebrate populations respond to habitat loss and fragmentation [61]

Ecosystem science Deciphering trophic relationships [40]

Evolution

Molecular evolution Understanding the process of nucleotide/protein evolution [62,63]

Molecular systematics Choosing a model of molecular evolution for phylogenetic reconstruction [4,64,65]

Life history evolution Identifying selective agents associated with phenotypes [30,31]

Adaptive radiation Estimating historical diversification rates of lineages [66]

Genetic mapping Identifying the genetic architecture of phenotypes [67]

Population genetics Examining patterns of gene flow [68]

Historical demography Using genetic markers to infer past population dynamics [69]
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opportunities for future development. We offer three ideas.
First, inferences derived from model selection ultimately
depend on the models included in the candidate set. Hence,
failure to include models that might best approximate the
underlying biological process [41–43], or spurious inclu-
sion of meaningless models, could each lead to misguided
inference. Therefore, researchers must think critically
about alternative biological hypotheses before data are
collected and analyzed. Second, if a model is to carry
biological meaning, rather than mere statistical signifi-
cance, then its predictions and parameter estimates must
be biologically plausible. Thus, models that fail to predict
known patterns, or those that generate implausible esti-
mates should be viewed as untenable [30]. In other words,
it is logically inconsistent to accept empirical support for a
model and its associated hypothesis (e.g. using AKAIKE

WEIGHTS) whilst discarding its parameter estimates and
predictions. Finally, biologists must decide when it is most
appropriate to use model selection, and when it is most
appropriate to use designed experiments and inferences
based on significance tests. Certain phenomena, such as
the evolutionary diversification of a lineage over tens of
thousands of years, are clearly beyond the reach of con-
trolled experiments; inference based on model selection is
the only option in such cases. Other phenomena, such as
population cycling, can be studied using observational
time series data [21] or by manipulative experimentation
[44], sometimes creating conflict as to which approach
is most fruitful. Given recent advances in model-based
inference, the complementary utility of these two approaches
warrants further attention.

The potential for model selection to be applied to many
more problems in ecology and evolutionary biology is
exciting. The model selection paradigm makes it clear
when the data show equivocal support for more than one
hypothesis. Practitioners accustomed to statistical hypo-
thesis tests that generate either ‘significant’ or ‘nonsigni-
ficant’ results might be frustrated that a single answer
does not always emerge. Yet, this ability to weight evidence
for competing hypotheses is precisely the strength of
model selection. Moreover, identifying levels of support for
competing hypotheses appears to be only a start for how
this tool might ultimately be employed. Advances in multi-
model inference promise to broaden the usefulness of the
model selection paradigm. As model selection matures, we
anticipate that it will continue to spread in ecology and
evolution, expanding the set of statistical tools available to
researchers.
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